the tribe to whom the female belonged. This concludes the the ceremony, and the young man then returns with his wife to his own tribe. He is, however, laid under this peculiar injunction, that he must not see any more his mother-in-law; and the following circumstance in connection with this fact, has been related to me by Mr. Grant, an eye-witness. "A motherin-law having been descried approaching, a number of leubras formed a circle around the young man, and he himself covered his face with his hands;—this, while it screened the old lady from his sight, served as a warning for her not to approach, as she must never be informed by a third party of the presence of her son-in-law."

The natives, however, of this, as of every other settled part of Australia, are fast disappearing before the rapid encroachments of the white man; in perfect accordance with that universal but mysterious law which governs civilization wherever the white man has planted its flag, sweeping the backward races from the face of the earth.

ART. VI.—Original Rules and Tables adapted to Cases of Sidelong Ground in the Setting Out and Computation of Railway Earthworks. By CLEMENT HODGKINSON, C.E., District Surveyor,

HAVING originally investigated and computed the following formulæ and tables for my own use, I venture to submit them to those members of the Philosophical Society who belong to the Engineering Profession.

Before giving my tables for determining the side distances that define, on sidelong ground, the edges of railway cuttings and embankments on both sides of the central line of equidistant stakes, I will briefly state the methods that have been generally followed for determining side distances.

First.—Instrumentally; by means of the well known combination of graduated bars and arcs devised by Sir John Macneil, which, when the sidelong inclination on either side of any stake had been determined by a clinometer or other instrument, admitted of being adjusted so as to show by inspection, on a graduated bar, the required side distance. Sir John Macneil's instrument is not however applicable to those constantly recurring cases in which a railway is partly in cutting and partly in embankment on the same side of a centre stake.

Second.-By successive approximations with the aid of the This method, which has been found well spirit-level. adapted for uneven ground, has been explained in detail in the work of Mr. Frederick Sims, C.E., lately Inspector of Railways for the Hon. East India Company; and has been very frequently employed by other engineers. I however noticed, some years ago, that his rule for determining the side distances, when the cross section showed both cutting and embankment on the same side of any centre stake, was totally wrong, and had occasioned errors of several feet in side distances set off for the South Eastern Railway. As Mr. Simm's work has passed through several editions, and as the erroneous rule alluded to has been since given in another work brought out by the well known publisher, Mr. Weale, I trust this passing allusion to it may not be considered uncalled for.*

Third.—By plotting the cross sections of the ground upon a large scale, and taking the side distances from the diagrams.

Fourth.—By various rules of thumb in vogue among contractors, and not admitting of mathematical demonstration.

Having considered it would be preferable to employ tabulated quantities for determining side distances, in lieu of employing Macneil's instrument, I have derived from the following formulæ the annexed tables of *multipliers*, and I have found that by using these multipliers (which are also applicable to those cases wherein Macneil's instrument fails to be of service), the required side distances can be computed and set off on the ground with more rapidity and certainty than by an instrument whose bars and arcs have to be adjusted at every stake.

Let A B C D (Fig. II.) represent a portion of the cross section of a railway cutting on one side of the centre stake at H: the ground, in this diagram, *converging* from the centre stake towards the plane of base at formation level. Draw

* A point being assumed as near the true position of the point D (Fig. I.) on the ground as can be determined by estimation, then the difference of level between that point and the central stake H minus the height B H, would be the first approximate value of D N, which multiplied by ratios of slope for embankment, would give the first approximate value of C N; which should be added in order to obtain the first approximate value of the side distance, B N, to B C, the half-width at formation level, and not to H O, the computed horizontal half-width for the height B H, as in Mr. Simm's treatise. H L, D O, parallel to base A C, and D K perpendicular to H L. Now let $\frac{b}{2}$ denote half base or B C.

h the height B H at centre stake.

m: 1 rate of inclination of slopes.

& angle of inclination of sidelong ground.

x the required horizontal side distance, or C D Then D $\kappa = x \tan \delta$

$$DK = \frac{KL}{m} \frac{\frac{b}{2} h + m - x}{m}$$
$$x \tan \beta \delta = \frac{\frac{b}{2} + hm - x}{m}$$
$$x = \frac{b}{2} + hm \left(\frac{1}{1 + \tan \delta \cdot m}\right)$$

In Fig. III., in which the sidelong inclination *diverges* from the centre stake in reference to the plane of the base, we obtain, in a similar manner,

Side distance or $x = \frac{b}{2} + h m \left(\frac{1}{1 - \tan \delta \cdot m} \right)$

In Fig. IV. let the profile of the sidelong ground cross the half base, and occasion cutting and embankment on the same side of the centre stake.

Here $D K + H L = H L \tan \delta$.

D K = H L tang
$$\delta$$
 - K L = x. tang δ - h
D K = $\frac{c \kappa}{m} = \frac{x-b}{m}$
x. tang δ - h = $\frac{x-b}{m}$
 $x = b - h m \left(\frac{1}{1 - \tan \beta \cdot m}\right)$

In Table No. I. I have given values of $\frac{1}{1 - \tan \delta}$ in for the more ordinary slopes, and in Table No. II. similar values of $\frac{1}{1 - \tan \delta}$

 $1 + \tan \delta \cdot m$

TABLE-No. I.

 $\frac{1}{1 - \tan \beta \, \delta. \, m}$

I bailg 0. m									
	SLOPES.								
INCLINATION.	1 to 1	1 <u>늘</u> to 1	2 to 1	$2\frac{1}{2}$ to 1					
0 1									
0 0	1.000	1.000	1.000	1.000					
0 10	1.003	1.004	1.006	1.009					
20	1.006	1.009	1.011	1.014					
30	1.009	1.013	1.017	1.021					
, 40	1.012	1.017	1.023	$1.028 \\ 1.036$					
50	1.015	1.022	1.029						
1-0	1.018	1.027	1:036	1.044					
10	1.021	1.031	1.042	1.052					
20	1.024	1.035	1.048	1.060					
30	1.027	1.039	1.054	1.068					
40	1.030	1.044	1.061	1.077					
50	1.033	1.049	1.068	1.086					
2 - 0	1.036	1.054	1.075	1.096					
10	1.039	1.059	1.081	1.105					
. 20	1.042	1.064	1.088	1.114					
30	1'045	1.069	1.092	1.123					
40	1.048	1.074	1.102	1.132					
50	1.051	1.079	1.109	1.141					
3 - 0	1.055	1.085	1.117	1.151					
10	1.058	1.090	1.124	1.161					
20	1.061	1.095	1.131	1.171					
30	1.064	1.100	1.139	1.181					
40	1.068	1.105	1.147	1.191					
50	1.071	1.111	1.155	1.201					
4 - 0	1.075	1.117	1.163	1.212					
10	1.078	1.122	1.171	1.223					
20	1.081	1.127	1.179	1.234					
30	1.084	1.133	1.187	1.245					
40	1.088	1.139	1.195	1.256					
50	1.092	1.145	1.203	1.268					
5 - 0	1.096	1.151	1.212	1.280					
10	1.100	1.157	1.221	1.292					
20	1.103	1.163	1.230	1.304					
30	1.106	1.169	1.239	1.317					
40	1.110	1.175	1.248	1.330					
50	1.114	1.181	1.257	1.343					
	1	1							

	SLOPES.							
INCLINATION.	1 to 1	$1\frac{1}{2}$ to 1	2 to 1	$2\frac{1}{2}$ to 1				
Q /								
6 - 0	1.118	1.187	1.266	1.356 1.370				
10	1.121	1.193	1.276					
20	1.125	1.199	1.285	1.384				
30	1.129	1.205	1.295	1.398				
40	1.132	1.212	1.305	1.413				
50	1·136 1·140	$1 \cdot 219$ $1 \cdot 226$	1.315 1.325	1.428 1.443				
$7 - 0 \\ 10$	1.143	1.220	1.335	1.445				
20	1.147	1.232 1.239	1.345	1.438				
20 30	1.151	1.246	1.356	1.491				
40	1.155	1.253	1.367	1.508				
50	1.159	1.260	1.378	1.525				
8-0	1.163	1.267	1.390	1.542				
10	1.167	1.274	1.402	1.550				
20	1.171	1.281	1.414	1.578				
30	1.175	1.288	1.426	1.597				
40	1.179	1.296	1.438	1.616				
50	1.183	1.304	1.451	1.635				
9-0	1.188	1.312	1.464	1.655				
10	1.192	1.319	1.477	1.675				
20 30	1.196 1.200	1·327 1·335	1·490 1·503	1.696 1.718				
40	1.200	1.343	1.517	1.741				
50	1.209	1.351	1.531	1.764				
10 - 0	1.214	1.359	1.545	1.788				
10	1.218	1.367	1.559	1.813				
20	1.222	1.376	1.574	1.839				
30	1.226	1.385	1.289	1.865				
40	1.231	1.394	1.604	1.892				
50	1.236	1.403	1.630	1.919				
11 - 0	1.241	1.412	1.636	1.947				
10	1.245	1.421	1.652	1.976				
20	1.250	1.430	1.669	2.006				
30	1.255	1.439	1.686	2.037				
40 50	$1 \cdot 260$ $1 \cdot 265$	1·448 1·458	1.704 1.722	2·069 2·102				
12 - 0	1.200	1.468	1.740	2.102				
12 - 0 10	1.275	1.478	1.740	2.130				
20	1.280	1.488	1.779	2.207				
30	1.285	1.498	1.799	2.244				
40	1.290	1.508	1.819	2.283				
50	1.295	1 519	1.840	2.323				

TABLE-No. I.-continued.

INCLINA	TION.	SLOPES.							
		1 to 1	$1\frac{1}{2}$ to 1	2 to 1	$2\frac{1}{2}$ to 1				
0	,								
13	- 0	1.300	1.530	1.860	2.365				
	10	1.305	1.541	1.881	2.408				
	20	1.310	1.552	1.902	2453				
	30	1 315	1.563	1.924	2.500				
	40	1.020	1.574	1.947	2.549				
	50	1.326	1.575	1.971	2.601				
14		1.332	1.597	1.997	2.655				
	10	1.337	1.609	2.022	2.711				
	20	1.342	1.621	2.048	2.769				
	30	1.348	1.633	2.074	2.830				
	40	1.354	1.645	2.101	2.893				
	50	1.360	1.658	2.128	2.960				
15	• 0	1.366	1.671	2.156	3.030				
	10	1.372	1.684	2.185	3.104				
	20	1.378	1.698	2.212	3.182				
	30	1.384	1.712	2.246	3.264				
	40	1.390	1.726	2.278	3.320				
	50	1.396	1.740	2.310	3.440				
16	0	1.400	1.754	2.344	3.534				
	10	1.407	1.769	2.380	3.633				
	20	1.414	1.784	2 417	3.740				
	30	J·420	1.799	2.455	3.855				
	40	1.426	1.814	2.494	3.978				
	50	1.433	1.830	2.534	4.109				
17		1.440	1.846	2.575	4.250				
	10	1.447	1.863	2.617	4.402				
	20	1.454	1.880	2.661	4.565				
	30	1.461	1.897	2.707	4.739				
	40	1.468	1.914	2.755	4.924				
	50	1.475	1.932	2.802	5.120				
18 —	0	1.482	1.950	2.826	5.328				

TABLE-No. I.—continued.

TABLE-No. II.

 $\frac{1}{1 + \tan \beta \ \delta. \ m}$

SIDELONG	SLOPE	SLOPE	SLOPE	SLOPE		
INCLINATION.	1 to 1	$1\frac{1}{2}$ to 1	2 to 1	$2\frac{1}{2}$ to 1		
• I						
	1.000	1.000	1.000	1.000		
• •	1.000	1.000	1.000	.993		
$10 \\ 20$	•997	•996	•994	•986		
20 30	•994	•991	•988	•980		
30 40	991	•987	·982			
	•988	.982	.977	•973		
50	•985	·978	·971	•966		
$1 - {0 \atop 20}$	•982	.974	•966	•959		
20 40	•977	967	•956	•946		
	•972	•958	•945	•933 、		
-	•966	•951	•935	·922 ·909		
20	•961	·943	•924	0		
40	•956	•936	·915	•897		
3 - 0	•950	•928	•905	*885		
20	•945	•920	·896	*873		
40	•940	·912	•887	*861		
4 - 0	•935	•905	•878	•850		
20	-930	•898	•869	•839		
40	•925	-891	•860	•829		
5 - 0	•920	•884	•851	·819		
20	•915	•877	•842	·809		
40	•910	870	•834	•800		
6 - 0	•905	•863	•826	•791		
20	•900	•857	•818	•782		
40	•895	·851	·810	•773		
7 - 0	•890	·846	*802	•764		
20	*885	•839 •833	•791	•756 •748		
40	*881		•787	·748		
8 0	•876	•826 •820	•781			
20	·871 ·866	•820 •813	·773 ·765	.732 .724		
40		·813 ·808	•759	·724 ·717		
$9 - 0 \\ 20$	·862 ·858	*802	·759	•709		
20 40	·858	·796	•752	·709		
	·854 ·850	•790	·745 ·739	•694		
10 -	·850 ·845	•784	•739	·694		
20	·845 ·841	•784 •778	·733 ·726			
40	, .841	110	720	·680		

SIDELONG INCLINATION.	SLOPE 1 to 1	SLOPE 1 ¹ / ₂ to 1	SLOPE 2 to 1	$\begin{array}{c} {}_{\rm SLOPE} \\ 2\frac{1}{2} \ {\rm to} \ 1 \end{array}$		
-0 1						
11 - 0	·836	.772	•719	•673		
$11 - 0 \\ 20$.832	.767	•713	•666		
40	·828	.762	•707	•659		
12 - 0	·824	.758	•701	•653		
20	·820	.753	•695	•646		
40	·816	•748	•689	•640		
13 - 0	·812	.743	•683	·634		
20	·808	\$738	•677	628		
40	•804	•733	.672	·622		
14 - 0	+800	·728	.667	·616		
14 - 0 20	•796	$\cdot 723$	-661	·610		
40	•792	•718	•656	·604		
15 - 0	•788	•713	•650	•598		
10 0 20	•784	.708	•645	•592		
40	•780	-703	•640	.587		
16 - 0	•777	•699	•635	.582		
10 - 0	.773	•694	•630	•577		
20 40	•769	•690	·625	.572		
17 - 0	•765	•685	1 0			
		•680	·620 ·615	•567		
20	·761 ·757	.676		•562		
. 40		.672	•610	•557		
18 - 0	•754	-072	•606	•551		
	1	1		1		

TABLE-No. II.-continued.

EXAMPLE OF APPLICATION OF TABLES.

Nature of stake.		Heights.	Heights. Horizontal & widths cor- responding to heights.	Sidelong Inclination.				Tabular multipliers.		Required side distances.			
Curtanora	No. 6	۳	SI	Hei	Hor	L	Left.		ght.	Left.	Right.	Left.	Right.
Cutting	46	30	 1to1	10.2	25-2	D	ep. 30'		51. • 0'	·903	1;118	22·8	28.2
do	47	do	do	7	21	6	20	4	40	•900	1.088	18·9	22.8
do	48	do	do	3.4	18.4	6	0	6	0	·905	1.118	16.7	20.6
đọ	49	do	do	1.2	16·2	5	40	5	30	$\left. \begin{array}{c} 1.175\\ .910 \end{array} \right\}$	1.106	15.5	17.9
Embank.	50	do	11-1	3	19.5	5	20	5	20	1.163	•877	22.7	17.1
	E	[

81

The tabular multipliers corresponding to angles of elevation for cuttings, and depression for embankments, are taken from Table No. I.; and those corresponding to angles of depression for cuttings, and elevation for embankments, are taken from Table No. II. Whenever the product of the horizontal half width (in column 6), by a tabular number, is less than the half base, it is an indication that there will be both cutting and embankment on the same side of the cen-This is 'the case on the left side of stake No. 49 tre stake. of the given example; and the required side distance, in this instance, is obtained by deducting from the half base, or 15, the product of the height 1.2 by the slope of embankment $1\frac{1}{2}$, and then multiplying this difference by the corresponding tabular number 1.175, taken from Table II., in accordance with the Formula No. III.

Formula for occasional use in computing the volume of a portion of a Cutting or Embankment between two consecutive centre pegs, when the sidelong inclination differs considerably at each peg.

I VENTURE to submit the following investigation of the volume of earthwork having rapidly changing profiles; as any rule that would tend to the attainment of greater accuracy in the computation of cubic contents in such cases, might be sometimes applicable in this colony, where the great cost of earthworks renders precision in the estimated contents thereof a matter of very great importance.

The French have made long and complicated investigations in connexion with the subject of *deblais* and *remblais*, but their formulæ are too abstruse for any practical application, and their tables for facilitating ordinary computation of earthwork, are less convenient than Bidder's improved tables and some others in use by British engineers.

I am indebted to the French for the hypothesis of the mode in which the surface of the ground may be conceived to be generated in the following investigation; but the investigation itself, and comparatively simple formula obtained, are my own.

Let A B C D E F G H (Fig. V.) represent a portion of railway cutting between consecutive stakes, and let the sidelong angle of inclination H G H' be not equal to the sidelong angle of inclination D C D' at the other end of this earthwork. In the first place it is evident that the surface D C G H is not a plane surface, but a contorted surface, and it may be conceived to

Sectionary & Some Me Contain

